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Abstract:  Due to the high non-linearity and coupling of a system model in an Unmanned Aerial Vehicle, UAV, 

the control of the heading has been a challenging task especially under windy and turbulent conditions. In this 

paper an online adaptive method using reinforcement learning is proposed to counter the effects of wind 

disturbances. The heading controller is designed in Matlab/Simulink for controlling a UAV in an X-Plane test 

platform. Through the X-Plane test platform, the performance of the designed controller is shown using real 

time simulations under different cross wind conditions. The performance of the proposed method is compared to 

that of a well tuned PID controller. The results show that the proposed method performs better in tracking a 

given heading angle under windy conditions.  
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I. Introduction 
Unmanned Aerial Vehicles, UAVs have become an interesting resource for applications where manned 

operations are considered inefficient and/or dangerous. Due to their design, various platforms exist such as the 

fixed wing and the quadcopter with each having different features. These devices are perking up interest in 

different applications including surveillance, search and rescue [1], target tracking, naval operations, weather 

observations and agricultural services. For the UAV to accomplish these tasks, it is paramount for it to have a 

good heading controller. 

Due to system dynamics and the nonlinearity of an UAV system, various control techniques have been 

used to control and stabilize it. Those include PID control [1] [3], H ∞ control [4], fuzzy systems in [5] [6], 

active disturbance rejection control, ADRC in [7] [8] and [9] an adaptive backstepping approach where the  

dynamics of the cross track error was derived using the lateral system equations of motion.  

In this paper an adaptive control strategy based on reinforcement learning technique for heading control 

of a fixed wing UAV in windy and turbulent conditions is presented. Due to the high nonlinearity of the system 

dynamics associated with small aerial vehicles and lack of complete knowledge of vehicle dynamics for 

parameter estimation, and adaptive method based on reinforcement learning is proposed. Reinforcement 

learning explores actions from available courses of action and chooses the best course of action based on the 

reward it gets, hence suitable for this kind of application. A nonlinear model of a small fixed wing UAV is 

taken, which is linearized about a stable trim point and decoupled into longitudinal and lateral designs. The 

lateral design is used to design the controller. The proposed controller will act on the deflection angles of the 

two lateral control surfaces i.e. the aileron and rudder in the presence of simulated windy conditions in X-Plane 

test platform. 

This rest of this paper is organized as follows: Section II presents the basics of UAV control, section III 

introduces reinforcement learning principles, section IV gives a brief preview of X-Plane test platform, section 

V gives the model of the UAV and the design of the controller, section VI provides the results and discussion 

and the conclusion is given in the last section. 
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UAV Control Basics 
Figure 1 shows that a UAV can move about the three axes of motion (x,y,z) from its centre of gravity. 

 
Figure 1: UAV Control surfaces 

 

The relative position of a UAV is converted to angular control in the three principle control axes; roll 

(φ), pitch (θ) and yaw (Ψ) [2]. The control surfaces for a fixed wing UAV are as illustrated in Figure 1; ailerons 

to control the rolling elevator to control the pitching and rudder to control the yawing movement. In addition to 

these three control surfaces, the engine throttle controls the engines power.  

Th equations of motion for a fixed wing UAV are derived in [10] [11]. The nonlinear equations are 

linearized about a stable trim level. The linear models obtained describe the aircraft natural longitudinal and 

lateral modes. 

A lateral state space model is decoupled from within the linear model and  used with inputs of aileron 

and rudder to control the heading of an aircraft. The decoupled lateral model state space equation is given as 

[12] 

𝑥 =  𝐴𝑙𝑎𝑡 𝑥𝑙𝑎𝑡 +  𝐵𝑙𝑎𝑡 𝑢𝑙𝑎𝑡  

Where 𝐴𝑙𝑎𝑡  is the state matrix, 𝑥𝑙𝑎𝑡  is the decoupled lateral state space model with  𝜌  𝛽   𝑟  𝜑  𝑇  as the 

state variables.  𝜌 is the roll rate, 𝛽 is the sideslip angle, 𝑟   is the yawing rate and  𝜑 is the roll angle . 𝐵𝑙𝑎𝑡  the 

input matrix,  𝑢𝑙𝑎𝑡   is the control input and comprises of 𝛿𝑎  the aileron deflection and   𝛿𝑟  the rudder deflection.  

 

II. Reinforcement Learning 
Reinforcement learning, RL is learning what to do – how to map situations to actions, so as to 

maximize some numerical reward. The learning agent is not told the correct actions; instead it explores the 

possible actions and remembers the reward it receives. It is inspired by natural learning mechanisms where 

animals adjust their actions based on the reward or punishment stimuli received from interacting with the 

environment. The RL model consists of a set of environment states 𝑠𝑡  ∈ 𝑆 ; a set of actions 𝑎𝑡  ∈ 𝐴 that an agent 

can perform at each state, and as a consequence of its action, the agent receives a numerical reward 𝑟𝑡 . At each 

time step, an agent implements a mapping from states to probabilities of selecting each possible action. This 

mapping is called the agent’s policy and denoted as 𝜋𝑡   which maximizes the cumulative reward of an agent 

over time as [13]  
𝑅 =   𝛾𝑡𝑟𝑡

∞
𝑡=0     

where 0 <  𝛾 < 1 is a discount factor, which reduces the value of future rewards. Reinforcement 

learning encompasses dynamic programming, DP  Monte Carlo methods and temporal difference, TD methods. 

TD methods comprise of Q-learning and sarsa algorithm where the latter is an online learning method [14].  

TD methods can learn directly from raw experience without a model of the environment dynamics and 

like DP, TD methods updates estimates based in part on other learned estimates without having to wait for a 

final outcome. The simplest TD method is given as  

𝑉 𝑠𝑡 ←  𝑉 𝑠𝑡 +  𝛼 𝑟𝑡+1 +  𝛾𝑉 𝑠𝑡+1 −  𝑉 𝑠𝑡   
SARSA algorithm being an online TD method, estimates 𝑄𝜋 𝑠, 𝑎  for the current behavior policy π for 

all states s  and actions a. This is done using the same TD method described above but the transitions from state-

action pair to state-action pair are considered rather than from a state to a state transition, hence the value of the 

state-action pairs 

𝑄 𝑠𝑡 , 𝑎𝑡 ←  𝑄 𝑠𝑡 , 𝑎𝑡 +  𝛼 𝑟𝑡+1 +  𝛾𝑄 𝑠𝑡+1, 𝑎𝑡+1 −                       𝑄 𝑠𝑡 , 𝑎𝑡    
This update is done after every transition from a non terminal state  𝑠𝑡 . Therefore with  sarsa there is a 

continual estimate of  𝑄𝜋  for the behavior policy π and at the same time a change of π towards greediness with 

respect to 𝑄𝜋 . 
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X-Plane 
X-Plane is powerful flight simulator; it is not a game but rather an engineering tool that can be used to 

predict the flying qualities of fixed and rotary wing aircraft with considerable accuracy [15].  

It has the capacity to send and receive data to and from other devices using the User Datagram 

Protocol, UDP. Each data packet is configured to carry specific aircraft parameters that are selected in the X-

Plane Input and Output data interface. Once these are selected on X-Plane, through loopback addresses it is 

possible to receive them in Matlab/Simulink in the same computer using X-Plane Communication Library in 

Simulink. The received packets are repackaged for use in Matlab/Simulink environment and the sent data is 

repacked in a format that can be received and processed by X-Plane.  

X-Plane also has the functionality of altering the weather conditions i.e. wind speed, shear speed and 

direction and turbulence of an altitude layer as shown in Figure 2. This allows for close to real life flying 

conditions hence a robust simulation environment.  

 

 
Figure 2: X-Plane atmospheric layers 

 

UAV Model 

An Ultra Stick 25E UAV is modeled using the aerodynamic coefficients in the mathematical model as provided 

for in [11] and taken from [4] and [16] with physical characteristics as 𝑚 = 1.9𝑘𝑔, 𝑏 = 1.2𝑚, 𝑔 = 9.8
𝑚

𝑠2 , 𝑆 =

0.32 𝑚2, 𝑐 = 0.3 𝑚, 𝜌 = 1.225𝑘𝑔/𝑚3,
1

𝜋𝑒𝐴𝑅
= 0.0815. 

With the above parameters, the state space matrix was calculated under trim conditions as given in [12] as  

𝐴 =   

−1.4000 0 0 9.4953
−30.9000 −12.8000 14.4000 0

1.4781 −0.4480 −6.080 0
0 1.0000 0 0

  

𝐵 =   

0 0.7412
61.4000 12.4000
−3.6700 15.0000

0 0

  

With states as  𝜌  𝛽   𝑟  𝜑   as was defined in literature above. 
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Controller Design and Implementation 

From the state space model above, the associated Ricatti coefficient, P is calculated  which is 

formulated as the Algebraic Ricatti Equation. The Ricatti coefficient is used to calculate the Cost function for 

each state-action pair using a simple Lyapunov function  𝑉 =  𝑋𝑇𝑷 𝑋  , which is reformulated to include 

references as 

  𝑄(𝑠, 𝑎) =  𝑋 − 𝑍 𝑇  𝑷 (𝑋 − 𝑍)  
where X are states and Z, the references.  

A reward function is calculated as the deviation of the target state from the desired state, which in this 

work is taken as the heading error. 

𝑟 𝑠 =  −𝐶1(∅ − ∅𝑟𝑒𝑓 ) 

The total value function is calculated, which is a sum of previous state-action value function, the current reward  

and the current state-action value function according to sarsa algorithm as 

𝑄 𝑠1 , 𝑎1 ←  𝑄 𝑠1 , 𝑎1 +  𝛼 𝑟2 +  𝛾𝑄 𝑠2 , 𝑎2 −  𝑄 𝑠1 , 𝑎1   
𝑄 𝑠2 , 𝑎2 ←  𝑄 𝑠2 , 𝑎2 +  𝛼 𝑟3 +  𝛾𝑄 𝑠3, 𝑎3 −  𝑄 𝑠2, 𝑎2   
…and so forth.   

After each cycle, this is updated as the total value function for the next cycle of learning.  

According to [17] it is allowed to have a one step gradient search of the value function i.e. exploitation for ease 

of real time implementation and offers less computational burden. This was formulated as the temporal 

difference as; 

𝛿𝑡 =  𝑟𝑡+1 +  𝛾𝑄 𝑠𝑡+1, 𝑎𝑡+1 −  𝑄 𝑠𝑡 , 𝑎𝑡   
An optimal control effort is given as  𝑢∗  =  −KX  but according to differential games algorithm, this is 

expressed as 

 𝑢∗ =  −
1

2
 𝑅−1𝑔𝑇∇𝑉∗   

where  ∇𝑉∗ is taken as the change in the optimal cost function.  In this work the temporal difference between 

successive cost functions is used as the optimal cost function which will be reinforcement signal. 

The control signals from a feed forward neural network are compared with this control signal. Then back 

propagation algorithm updates the feedforward neural network weights using back propagation to compensate 

for the difference. This implies that we are correcting the error in the control deflection in the next control 

deflection through update of weights thus slowly taking our deflections to the best available control effort in 

each consecutive cycle. This process is shown in Figure 3. 

 

 
Figure 3: Experiment Block Diagram 

 

III. Results And Discussion 
The controller designed as above was used to control a UAV in X-Plane as in [12] where the 

disturbances were introduced using the weather setting in X-Plane as explained above. 

A crosswind of 5 knots, 345
0
 wind direction and 2

0
 wind shear was set. The tracking ability of the controller 

under this condition was as shown in Figure 4 below.  

The red line shows PID controller the designed and the Blue line shows the RL controller  
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Figure 4: 5 knots wind disturbance 

 

The response with these disturbance show that the UAV is able to track well the reference in the 

presence of these disturbances for both the controllers. The overshoot in the step heading change is explained in 

[12] [2]. 

A 10 knots, 345
0
 wind direction and 2

0
 wind shear was set in X-Plane weather widget, and the tracking 

performance of the controllers are shown in Figure 5. 

 

 
Figure 5: 10knots wind disturbance 

 

Here, it can be seen that the disturbance is substantial to cause some slight bumpy deviations from the reference. 

But the designed controllers are able to keep the UAV heading close to reference heading.  

The crosswind was adjusted to 20 knots, 345
0
 wind direction and 5

0
 wind shear. A similar flight regime as above 

was used. The response was as shown in Figure 6 below. 

 
Figure 6: 20 knots wind disturbance 
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The disturbances are big enough to cause some bumpy deviations from the reference. The response 

from the RL controller has lesser bumpy deviations from the reference. Therefore, the RL controller performs 

slightly better. 

A 40 knots, 345
0
 wind direction and 10

0
 wind shear was introduced as Figure 7 shows the responses achieved by 

the two controllers. 

 
Figure 7: 40 Knots wind disturbance 

 

This represented severe wind conditions for a small UAV. The tracking ability of the controllers under this 

conditions showed big deviations from the reference heading. This similar response was reported in [18]. 

Finally, turbulence was introduced which included 20 knots, a wind shear of 5 knots and a 10
0
 shear speed in  

X-Plane. This represents extreme weather turbulent conditions for a small UAV. The tracking performance 

under this conditions was as shown in Figure 8. 

 

 
Figure 8: Turbulence in X-Plane 

 

The response under this condition is poor; the UAV heads in the right direction but with big deviations 

and oscillations from the desired reference. It can also be noted that the PID controller response had bigger 

deviations than the RL controller. The reason for this behavior is highlighted in [19] [20]which states that the 

sensor and actuator dynamics do not scale with aircraft dynamics hence a limitation in lateral response for 

UAVs in turbulent conditions.  

 

IV. Conclusion 
In this paper, a heading controller for a small fixed wing UAV in windy and turbulent conditions was 

proposed. A controller based on reinforcement learning was used to achieve that, where the lateral dynamics of 

the UAV with respect to the desired heading was derived. The simulation results show the usability of the 

proposed method in comparison to the already existing PID control. Future work should be done to validate the 

proposed method using a prototype. 
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